Bi-ideals of Γ - near subtraction semigroups

P. Meenakshi¹, N. Meenakumari²

(1,2) PG & Research Department of Mathematics A. P. C. Mahalaxmi College for Women, Thoothukudi, Tamil Nadu, India. ¹meena.bushy@gmail.com ²meenakumarin123@gmail.com

ABSTRACT

Schein, B. M [9] introduced the set theoretic subtraction '-' which is analogous to subtraction algebra and it is developed by Abbott, J. C.[1], Zelinka, B.[12] discussed the problem of Schein [9] relating the structure of multiplication in a subtraction semigroup. Kim, K. H [5]et. al. studied an ideal of a subtraction semigroup. Dheena, P.[3] and his colleagues defined the concept of near-subtraction semigroups and discussed their properties. Alandkar, S.J[2] gave the definition of Γ -near subtraction semigroup and some of its properties.

In this paper, using the concept of bi-ideals in near subtraction semigroups, we introduce the notion of bi-ideals in Γ -near subtraction semigroups. We show that the set of all bi-ideals of a Γ -near subtraction semigroup form a moore system. Also we proved that the intersection of a biideals of Γ -near subtraction semigroup and sub- Γ -near subtraction semigroup is again a bi-ideal of X. Throughout this paper, by a Γ - near subtraction semigroup X, we mean a zero symmetric Γ -near subtraction semigroup.

Keywords:

Quasi ideals, bi-ideal, Γ-near subtraction semigroup.

1.Introduction

Throughout this paper X stands for a Zero-Symmetric Γ-near subtraction semigroup. Γ-near subtraction semigroup was introduced by Dr. S. J. Alandkar[2]. For basic terminology in near subtraction semigroup, we refer to Dheena [3] and for Γ -near subtraction semigroup, we refer to Dr. S. J. Alandkar[2]. Tamizh Chelvam and Ganesan [11]introduced the notion of biideals in near-rings. In this paper we introduce the notion of bi-ideals in Γ -near subtraction semigroups.

2. Preliminaries

A nonempty set X together with a single binary operation "-" is said to be a subtraction algebra if it satisfies

following identities: for any x, y, $z \in X$, i) x -(y-x) = x; ii) x - (x - y) = y - (y - x); iii) (x - y) - z = (x - z) - y. A nonempty set X together with two binary operations "-" and "." is said to be a subtraction semigroup if it satisfies the following axioms: for any x, y, $z \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii)x(y - z) = xy - xzand (x - y)z = xz - yz. A nonempty set X together with two binary operations "-" and "." is said to be a near-subtraction semigroup(right) if it satisfies the following axioms: for any x, y, $z \in X$, i)(X, .) is a semigroup ii) (X, -) is a subtraction algebra; iii) (x - y)z = xz - yz. A Γ -near subtraction semigroup is a triple $(X, -, \gamma)$, $\gamma \in \Gamma$, where Γ is a non-empty set of binary operators on X, such that $(X, -, \gamma)$ is a near-subtraction

semigroup $\forall \gamma \in \Gamma$. In practice, we called simply Γ -near subtraction semigroup instead of right Γ -near subtraction semigroup. Similarly we can define a Γ -near subtraction semigroup(left). It is clear that 0ya = 0 for all $a \in X$ and $\forall \gamma \in \Gamma$. A nonempty subset S of a subtraction algebra X is said to be subalgebra of X, if $x - y \in S$ whenever $x, y \in$ S. A subalgebra M of (X, -) with M $\Gamma M \subseteq M$ is called a sub Γ -near subtraction semigroup of X. A nonempty subset A of X is called i) a left Γ -subalgebra of X if A is a subalgebra of (X, -) and $X \Gamma A \subseteq A$. ie.) $X \gamma A \subseteq A$ for all $\gamma \in \Gamma$. ii) a right Γ -subalgebra of X if A is a subalgebra of (X, -) and $A\Gamma X \subseteq A$. ie., $A\gamma X \subseteq A$ for all $\gamma \in \Gamma$. $X_0 = \{x \in X \mid x\gamma 0 = 0\}$ for all $\gamma \in \Gamma$ is called the zero-symmetric part of X. X is called Zero-Symmetric, if X = X_0 . An element $a \in X$ is called idempotent if $a\gamma a = a$ for all $\gamma \in \Gamma$. A family ζ of subsets of a set A is called a Moore system, if i) $A \in \zeta$ and ii) ζ is closed under arbitrary intersection. $X_d = \{n \in X/n\gamma(x + y) = n\gamma x\}$ + nyy for all x, y \in X and for all $\gamma \in \Gamma$ } is the set of all distributive elements of X. X is called distributive if $X = X_d$.

3.Bi- ideals in Γ -near subtraction semigroup

In this section, we introduce the notion of bi-ideals in Γ -near subtraction semigroup and we obtain some preliminary results.

Definition 3.1

A subalgebra Q of (X, -) is said to be a quasi-ideal of X if $(Q\Gamma X) \cap (X\Gamma Q) \subseteq Q$.

Definition 3.2

A subalgebra B of (X, -) is said to be a bi- ideal of X if $B\Gamma X\Gamma B\subseteq B$.

Proposition 3.3

The set of all bi- ideals of a Γ -near subtraction semigroup X form a Moore system on X.

Proof:

Let $\{B_i\}_{i\in I}$ be a set of bi- ideals in X. Let $B = \bigcap_{i \in I} B_i$. Then $B \Gamma X \Gamma B$ $\subseteq B_i \Gamma X \Gamma B_i \subseteq B_i \subseteq B, \forall i \in I$. Therefore B is a bi- ideal of X.

Remark 3.4

Every quasi-ideal is a bi- ideal.

Proof:

For, if Q is a quasi-ideal, then $(Q\Gamma X)\cap (X\Gamma Q)\subseteq Q$. Now, $Q\Gamma X\Gamma Q=Q\Gamma (X\cap Q)$ $X)\Gamma Q = (Q\Gamma X) \cap (X\Gamma Q) \subseteq Q$. Therefore Q is a bi- ideal.

Proposition 3.5

Let X be a zero-symmetric Γ -near subtraction semigroup in which every quasi-ideal is idempotent. Then for left Γ subalgebra L and right Γ -subalgebra R of X, $R\Gamma L = R \cap L \subseteq L\Gamma R$ is true.

Proof:

Let A and B be two quasi-ideals in X. Then by proposition 3.3, $A \cap B$ is also a quasi-ideal. By the assumption on quasiideals we have $A \cap B = (A \cap B)\Gamma(A \cap B) \subseteq$ $(A\Gamma B) \cap (B\Gamma A)$. On the other hand, we have $(A\Gamma B) \cap (B\Gamma A) \subseteq (A\Gamma X) \cap (X\Gamma A) \subseteq A$ and analogously, $(A\Gamma B) \cap (B\Gamma A) \subseteq B$. Hence $(A\Gamma B) \cap (B\Gamma A) \subseteq A \cap B$. Hence $A \cap B =$ $(A\Gamma B) \cap (B\Gamma A)$. Since one sided subalgebra are always quasi-ideals, by the above argument, we have $R \cap L = (R\Gamma L) \cap$ $(L\Gamma R) \subseteq R\Gamma L$ for a left Γ -subalgebra L and right Γ-subalgebra of X. Trivially RΓL⊆ $R \cap L$ and so $R\Gamma L = R \cap L \subseteq L\Gamma R$.

Proposition 3.6

Let R and L be respectively right and left Γ -subalgebras of X. Then any subalgebra B of X such that $R\Gamma L \subseteq B \subseteq$ $R \cap L$ is a bi- ideal of X.

Proof:

For a subalgebra B of (X, -) with $R\Gamma L \subseteq B \subseteq R \cap L$, we have $B\Gamma X\Gamma B \subseteq$ $(R \cap L)\Gamma X\Gamma(R \cap L) \subseteq R\Gamma X\Gamma L \subseteq R\Gamma L \subseteq B$ and so B is a bi- ideal of X.

Proposition 3.7

If B is a bi- ideal of X and S is a sub Γ -near subtraction semigroup of X, then $B \cap S$ is a bi- ideal of S.

Proof:

Since B is a bi- ideal of X, BFXFB \subseteq B. Let C= B \cap S. Now, C\(\Gamma \subseteq \Gamma \) $(B \cap S)\Gamma S\Gamma(B \cap S) \subseteq (B\Gamma S\Gamma B)\cap S \subseteq B \cap S = C.$ Hence C is a bi-ideal of S.

Proposition 3.8

Let X be a zero-symmetric Γ - near subtraction semigroup. If B is a bi- ideal of X, then Byx and x'yB for all $\gamma \in \Gamma$ are biideal of X where x, $x' \in X$ and x' is distributive element in X.

Proof:

Clearly Byn is a subalgebra of (X, -) $\forall \gamma \in \Gamma$. Also $(B \gamma x)\Gamma X\Gamma (B \gamma x)\subseteq$ $B\Gamma X\Gamma(B\gamma x) \subseteq B\gamma x$ and so we get that $B\gamma x$ is a bi- ideal of X. Since x' is distributive in X, $x'\gamma B$ is a subalgebra of (X, -) for all $\gamma \in \Gamma$ $(x'\gamma B)\Gamma X\Gamma(x'\gamma B)\subseteq x'\gamma B$ and hence $x'\gamma B$ is a bi- ideal of X.

Corollary 3.9

If B is a bi-ideal of zero-symmetric Γ- near subtraction semigroup X and b is a distributive element in X, then by Byc is a bi- ideal of X for $c \in X$ and for all $\gamma \in \Gamma$.

Proposition 3.10

If B is a bi- ideal and sub Γ - near subtraction semigroup of a Zero symmetric Γ- near subtraction semigroup X and C is a

ideal of the Γ near subtraction bisemigroup B such that $C^2 = C$, then C is a bi- ideal of the Γ - near subtraction semigroup X.

Proof:

Since C is a bi- ideal of the Γ - near semigroup subtraction В we have, СГВГС⊆С Now, СГХГС C^2 $\Gamma X \Gamma$ C^2 $=C\Gamma(C\Gamma X\Gamma C)\Gamma C$ $C\Gamma(B\Gamma X\Gamma B)\Gamma C \subseteq C\Gamma B\Gamma C \subseteq C$. Hence C is bi- idealof the Γ - near subtraction semigroup X.

Theorem 3.11

Let X be a Γ - near subtraction semigroup. Let B be a bi- ideal of the Γ near subtraction semigroup X and A be a non-empty subset of X, then following are true.

- B Γ A is a bi- ideal of the Γ near i) subtraction semigroup X.
- AFB is a bi- ideal of the Γ near ii) subtraction semigroup X.

Proof:

- i) We see that $(B\Gamma A)\Gamma(B\Gamma A) =$ (ΒΓΑΓΒ)ΓΑ and $(B\Gamma A)\Gamma X\Gamma (B\Gamma A)=(B\Gamma A\Gamma X\Gamma B)\Gamma$ A. Since B is a bi- ideal of the Γ near subtraction semigroup X, $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A \subseteq$ $B\Gamma A$ and $(B\Gamma A)\Gamma X\Gamma (B\Gamma A) =$ $(B\Gamma A\Gamma X\Gamma B)\Gamma A \subseteq (B\Gamma X\Gamma B)\Gamma A$ \subseteq B Γ A. Therefore B Γ A is a biideal of the Γ - near subtraction semigroup X.
- Proof is similar to i) of theorem ii) 3.11.

References

[1] **Abbott J. C.**, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.

- [2] **Alandkar S. J.,** *A Note on Γ- near subtraction semigroups*, Indian Streams Research Journal, Vol.6, Issue-6(2016)
- [3] **Dheena P. and Satheesh Kumar G.**, *On strong regular near-subtraction semigroups* Commun. Korean Math.Soc.22(2007),pp.323-330.
- [4] **Kaushik J. P. and Moin Khan**, *On bi-* Γ -*ideal in* Γ -*semirings*, Int. J. Contemp. Math. Sciences, Vol. 3, no.26(2008),pp.1255-1260
- [5] **Kim K. H. Roh E. H. and Yon Y. H.**, *A Note on Subtraction Semigroups*, Scientiae Mathematicae Japonicae Online, Vol.10,(2004),pp.393-401.
- [6] Mahalakshmi V., Maharasi S., Jayalakshmi S., On bi-ideals of Near-Subtraction Semigroup, Advances in Algebra ISSN 0973-6964, Vol. 6(1)(2013), pp. 35-43.
- [7] Meenakshi, P. and Meenakumari N., On semigamma bi-ideals in Γ -seminearrings, International Journal of Current Research Vol.9, Issue 10(2017), pp.59172-59175.
- [8] **Pilz Gunter**, *Near-Rings*, North Holland, Amsterdam, 1983.

- [9] **Schein B. M.,** *Difference Semigroups*, Comm. In Algebra 20(1992),pp. 2153-2169.
- [10] **Tamizh Chelvam T. And Meenakumari N.,** *Bi-ideals of Gamma Near-Rings*, Southeast Asian Bulletin of Mathematics, 27(2004), pp. 983-988.
- [11] **Tamil Chelvam and N. Ganesan** *On Bi-ideals of Near-Rings*, Indian J. Pure appl. Math. 18(11)(1987),pp.1002-1005.
- [12] **Zelinka B.,** *Subtraction Semigroups*, Math. Bohemica, 120(1995), pp. 445-447.